

60th Annual Road Builders' Clinic Utah Accelerated Bridge Construction "Moving Forward At 1 MPH"

Rukhsana (Shana) Lindsey Director of Research & Bridge Operations Utah Department of Transportation

Presentation Overview The ABC Journey

- Why Use Accelerated Bridge Construction?
- History & Economics of ABC
- What we did BEFORE the 1st ABC project
- What we did DURING the 1st ABC project.
- What we've done since the 1st ABC project

WHY ABC?

Family of APC (Accelerated Project Construction)

- Over the past decade, several contracting methods have been introduced in Utah:
 - A+B Bidding (cost incentive).
 - Lane Rental (cost incentive).
 - Design Build (innovation).
 - CMGC (innovation + risk).
- ABC is the next step in an ongoing culture within UDOT to minimize construction impacts.

Benefits of Using ABC

- Reduce TRAFFIC impacts (shorter schedules, limited detours, off peak work)
- Improve SAFETY to workers and public (reduced exposure time and off site construction).
- Improve QUALITY (controlled cures and construction without traffic).
- **COSTS** savings (user costs, increased durability, reduced traffic control, more \$\$ going to direct construction).
- Reduced ECONOMIC & Business impacts from delays.
- Reduced **CONSTRUCTION** SEASON, and 1 years inflation (7% estimate).
- Reduced ENVIRONMENTAL impacts (footprint, air quality).

History and Economics of using ABC?

Progression of ABC (Accelerated Bridge Construction)

Past

- Precast AASHTO Girders
- Precast Culverts
- Precast Noise/Retaining Walls

Future

- Precast Deck Panels
- Precast Piers
- Heavy Lift (SPMT)
- Specialty Materials
- Standards

ECONOMICS Tradition Cost Optimization

- Contractors want to choose a construction time that minimizes their costs.
- Optimal costs and schedule are usually driven by available labor, equipment and workloads not how fast they can do the job.
- User costs are NOT considered in a traditional bid format.

ECONOMICSUser Costs

- User costs to public increase with time.
- Impacts include:
 economic loss, time
 wasted in traffic,
 business impacts, fuel
 costs, etc.
- With traditional bidding and construction, the contractor does not share in user costs.

ECONOMICS Total Cost (Construction + User)

- Combining user costs
 with direct costs
 reduces the optimal
 time to construct.
- Including User Costs shifts incentive from lowest cost to contractor to lowest cost to everyone.

New Paradigm

From

"Lowest Construction Cost"

to

"Lowest Project Cost"

Introducing New Ideas "Change is Inevitable, Misery is Optional"

- Went on scan tours to visit other successful projects.
- Change requires a Champion
- Expect highest resistance from within (contractors, designers) not pubic or external.
- Requires technical acceptance that new technology will work.
- Requires acceptance that initial higher cost will add long term value.
- Requires "targeted messaging" to public, media and politicians.
- First pilot project has to be successful.
- Decision tree/when to use ABC

Cost of New Technology "Economy of Scale – Mass Production"

- Cost to produce declines as the quantity produced increases.
- Time to produce also declines with experience and standardization.
- Examples: cars, computers, digital cameras, flat screen TV, AASHTO beams CADD, bolts/rivets, etc.
- Requires early investment at higher cost, with long term cost savings as technology is accepted as standard practice.

ABC Decision Tree

BEFORE Our 1st SPMT Move

What are SPMT's?

- "Self Propelled Modular Transports"
- Multiple Axles Lines of Independently Steered Bogies
- A 360° Turning Capacity for each Bogie
- Lifting Capacity of 25,000 pounds per axle
- Historically used in many other industries, including maritime transport.

SPMT History

- 1st SPMT Project (I-215 at 45th South) completed in 1 weekend during 2007
- 12 Additional SPMT Projects completed in 2008.
- ABC used as standard practice for future projects.

Funding & Coordination

 Obtained \$1 M of special funding from Highways for Life (HFL) as seed money to implement new technology (SPMT).

- Worked with Project Managers to offset reluctance of new technology.
- Set up tracking costs of new technology over time in comparison to traditional methods.

Planning Ahead

- Animation to explain technology
- Apply Lessons Learned from Precast Deck Projects
- Applied Lessons Learned from Scanning Tours to other /States.
- Meetings with SMPT equipment suppliers (Mammoet).
- Used 2007 AASHTO Bridge Conference to share technology.
- Success in getting \$1 Million Highways for Life funding.
- Held workshops with contractors & designers.

Who is Our Customer?

- General Public
- Trucking Industry
- Political (Legislature)
- Surrounding businesses
- Schools, special facilities, residents
- Emergency Services
- Media
- Contractors and Consultants

Customer Needs

- Functional use
- Safety
- Minimize impacts to local businesses
- Access for schools, emergency services, etc
- Reduce delays from construction
- Keep public informed to allow them to make decisions
- Minimize impacts to economy.
- Provide Value

Lessons Learned Precast Deck Projects

- Survey for Fit (horizontal, vertical, etc)
- Deflection affecting fit
- Composite Action with Girders
- Concerns with Seismic performance
- Extra Rebar for lifting
- Quality of Concrete is Better
- Worker Safety improved

Video Animation

- Released 2 weeks prior to move
- •Messaging for media and public

1st SPMT Project in Utah I-215 @ 4500 South

- Existing bridge had severe deterioration of beam ends, columns.
- Deck 4, Sub 2, Super 4 (NBIS)
- Temporary shoring installed
- Sufficiency rating = 40
- Crosses I-215 Urban setting

What we did DURING the Move

- Round the Clock People on Site
- Contingency and Communication Plans
- Celebrate & Promote Success and Benefits

- Openly spoke of the cost of the technology and benefits of the new technology.
- Public Involvement and Crowd Control
- Media Coverage & Messaging
- Invited surrounding states to come and learn, holding workshops to transfer technology & exchange ideas.
- Involved other State DOT's, FHWA, Contractors

Messaging to Media & Public

- Anticipated people would come, and media would cover.
- Developed Messaging to tell "our" story, not theirs.
- Developed contingency plans.
- Developed and distributed flyers, press releases, etc.
- Developed animation video to explain use of new technology.
- Created public observation areas & crowd control.

What We Have Done Since Our 1st Move

- Technology Transfer
- Monitoring the move
- Create Standards
- Program to do ABC not by project
- Scanning Tours and Presentations to other States.
- Held Workshops with industry
- Developed ABC Flowchart

Bridge Instrumentation

Goals of Instrumentation

- Initial monitor during the move, stay with elastic limits of design.
- •Future designs
 - •Better designers
 - •Reduce deflection/cracking
 - •More economical design to utilize ABC
- •Performance for Long Term

Successful Pilot Project Led To:

•Success led to use of SPMT on 12 additional bridges in 2008, and development of ABC standards.

Lessons Learned I-80, State to 1300 East

7 Bridges Moved

- "1300 East Bridge Garden"
- 7 bridges built along 1-80 westbound corridor.
- Constructed off-site then moved into place using SPMT.

ABC Method

- •Skid Rails and Climbing Jacks
- •SPMT
- •User Savings: \$4,000,000

I-80 Parleys Canyon Lessons Learned

- Contractor chose to build new bridges on supports next to existing bridges, allowing visualization of fit.
- Complex geometry, 6% grade with super-elevation. Building next to existing bridges helped to visualize fit.
- Coordination with events (concerts, arts festival, etc) in Park City.
- User Savings: \$5,354,447

I-215 @ 3300 East Lessons Learned

Design Construction

- Utility conflicts under travel path (gas & water)
- Lightweight aggregate reduced number of SPMT's used.
- Traditional demolition of existing bridge took longer than if SPMT's had been used.
- Public involvement a success (school art, media messaging, spectator areas).
- User Savings: \$4,000,000

Results

- Public Opinion
 Polls have
 increased with
 projects.
- User costs reduced by approx. \$ 4Million per project.
- Road closure reduced to 2 days versus 6-9 months.

Results

Cost decliningwith moreprojects andexperience.

Utah Experience Getting Better With Time

White Paper on Design Savings for Bulb Tee

- "Investment in (bulb tee) standards can be recouped in 8 bridge designs"
- "The cost benefit for 30 bridges is approximately 4:1"
- http://www.udot.utah.gov/main/f?p=100:pg:0:::1:T,V:2092,

Things We Do To Sustain ABC

- Program of Projects
- Incorporate into our Process
 - New Committees
 - Standards
- Change in Paradigm

Awards

UDOT has won multiple awards for implementation of ABC in Utah. These awards include:

•The 2009 ACEC Merit Award for studies and Research

2008 IRF Global Road Achievement Award for Construction Methodologies

- •2008 NPHQ Award for Making A Difference Gold Award for Breaking The Mold
- •2008 Governor's Award for Excellence in Innovations and Efficiency
- •2008 Best of State Award for Science and Technology

Questions

This presentation can be found at: http://www.udot.utah.gov/main/f?p=100:pg:0:::1:T,V:1991,

